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Introduction

We denote by X and Y Banach spaces, BX the closed unit ball of

X, by L(X,Y ) the space of bounded linear operator from X to Y ,

E and F Banach lattices, [x, y] := {z ∈ E : x ⩽ z ⩽ y} for x, y ∈ E,

sol(A) :=
⋃
a∈A

[−|a|, |a|]

the solid hull of A ⊆ E, and

Ea := {x ∈ E : |x| ⩾ xn ↓ 0 ⇒ ∥xn∥ → 0}

the order continuous part of E.

In what follows all operators are linear and bounded.
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The theory of L-weakly compact (brie�y, Lwc) sets and operators

was created and developed in [Meyer-Nieberg: Math. Z. (1974)]

in order to diversify the concept of weakly compact operators via

imposing the Banach lattice structure on the range.

a) A subset A of F is an Lwc set if every disjoint sequence in

sol(A) is norm-null.

b) An operator L(X,F ) is an Lwc operator (brie�y, T ∈ Lwc(X,F ))

if T (BX) is an Lwc subset of F .
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Meyer-Nieberg proved that Lwc sets are relatively weakly compact

(and hence Lwc operators are weakly compact). The next key fact

goes back to [Meyer-Nieberg: Math. Z. (1974)]. It was precisely

stated in [Burkinshaw and Dodds: Illinois J. Math. (1977)].

Proposition 1. Let A ⊆ E and B ⊆ E′ be nonempty bounded sets.

Then every disjoint sequence in sol(A) is uniformly null on B i�

every disjoint sequence in sol(B) is uniformly null on A.
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Since ∥f∥ = sup{|f(x)| : x ∈ BX} = sup{|y(f)| : y ∈ BX ′′} then a

sequence (fn) in X ′ is uniformly null on BX i� it is uniformly null

on BX ′′, and hence the next lemma follows from Proposition 1.

Lemma 2. Let C be a nonempty bounded subset of F ′. TFAE.

i) C is an Lwc subset of F ′.

ii) Each disjoint sequence in BF is uniformly null on C.

iii) Each disjoint sequence in BF ′′ is uniformly null on C.
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Meyer-Nieberg described the duals of Lwc operators via

De�nition 3. An operator T ∈ L(E, Y ) is called an Mwc operator

if ∥Txn∥ → 0 for every disjoint bounded (xn) in E.

and proved in Satz.3 of [Meyer-Nieberg: Math. Z. (1974)]

S′ ∈ Lwc(Y ′, E′) ⇐⇒ S ∈ Mwc(E, Y ).

T ′ ∈ Mwc(F ′, X ′) ⇐⇒ T ∈ Lwc(X,F ).

In particular, the bi-duals of Lwc- (Mwc-operators) are Lwc (Mwc).
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Replacing (in the de�nition of Lwc-operators) norm bounded sets

by weakly compact sets and by order bounded sets, Bouras, Lhaimer

and Moussa introduced in [BLM: Positivity (2018) and (2021)]

De�nition 4.An operator T ∈ L(X,F ) (resp. T ∈ L(E,F )) is called

a-Lwc (resp. o-Lwc) if T carries weakly compact subsets of X (resp.

order bounded subsets of E) onto Lwc-subsets of F .

and described the duals of a-Lwc- and o-Lwc-operators via
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De�nition 5. An operator T ∈ L(E, Y ) is called

a) almost M-weakly compact (a-Mwc) if fn(Txn) → 0 for every

w-convergent (fn) in Y ′ and every disjoint bounded (xn) in E.

An operator T ∈ L(E,F ) is called

b) order M-weakly compact (o-Mwc) if fn(Txn) → 0 for every

order bounded (fn) in F ′ and every disjoint bounded (xn) in E.
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Although the bi-duals of a-Lwc-/o-Lwc-operators need not to be

a-Lwc/o-Lwc, there is the following semi-duality

Theorem 6. [BLM: Positivity (2018)]:

(i) S′ ∈ a-LW(Y ′, E′) ⇐⇒ S ∈ a-MW(E, Y ).

(ii) T ′ ∈ a-MW(F ′, X ′) ⇒ T ∈ a-LW(X,F ).

And [BLM: Positivity (2021)]:

(iii) S′ ∈ o-LW(F ′, E′) ⇐⇒ S ∈ o-MW(E,F ).

(iv) T ′ ∈ o-MW(F ′, E′) ⇒ T ∈ o-LW(E,F ).
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De�nition 7. A bounded subset A of X is called:

a) a Dunford�Pettis set (or A is DP) if (fn) is uniformly null on A

for each w-null (fn) in X ′ [Andrews: Math. Ann. (1979)].

b) a limited set if (fn) is uniformly null on A for each w∗-null (fn)

in X ′ [Bourgain and Diestel: Math. Nachr. (1984)].
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In re�exive spaces, DP sets and limited sets agree with relatively

compact sets. In general,

A is relatively compact ⇒ A is limited ⇒ A is DP.

The unit ball BX is not limited in X unless dim(X) < ∞ (this

fact was a solution of a long-standing open problem that each w∗-

null sequence in a Banach space is norm-null i� the BS is �nite

dimentional in [Josefson: Arkiv for Math (1975)] and [Nissenzweig:

Isr. J. Math (1975)]). In particular, Bc0 is not limited in c0.

Phillip's lemma [Phillips: TAMS (1940)] is exactly the fact that B̂c0

is limited in c′′0 = ℓ∞.

Limited sets are relatively compact in separable and in re�exive

Banach spaces by [BD (1984)].
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Bc0 is DP because c′0 = ℓ1 has the Schur property. It is shown by

Alpay, Gorokhova, and EE [AEG: preprint (2023)] that DP sets

turn to limited sets while embedded in the bi-dual.

Theorem 8. [AEG (2023)] Let A ⊆ X. TFAE:

i) A is a DP subset of X.

ii) Â is a limited subset of X ′′.

11



Dunford�Pettis L-weakly compact and limitedly

L-weakly compact operators

The proof of the following theorem is based on Proposition 1.

Theorem 9. [AEG (2023)] Let T ∈ L(X,F ). TFAE.

i) T takes limited subsets of X onto Lwc subsets of F .

ii) T takes compact subsets of X onto Lwc subsets of F .

iii) {Tx} is an Lwc subset of F for each x ∈ X.

iv) T ′fn
w∗
→ 0 in X ′ for each disjoint bounded sequence (fn) in F ′.

12



Because of i), we prefer to call operators satisfying the above

conditions by limitedly Lwc operators (they may equally deserve to

be called compactly Lwc operators due to ii)). Operators satisfying

iv) were introduced in [Oughajji and Moussa: Afr. Mat. (2022)]

under the name weak L-weakly compact operators (this name looks

more suitable for a-Lwc operators rather than for l-Lwc operators).
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De�nition 10. An operator T : X → F is called:

a) a Dunford�Pettis L-weakly compact (brie�y, T ∈ DP-Lwc(X,F )),

if T carries DP subsets of X onto Lwc subsets of F .

b) limitedly L-weakly compact (brie�y, T ∈ l-Lwc(X,F )), if T carries

limited subsets of X onto Lwc subsets of F .

DP-Lwc(X,F ) and l-Lwc(X,F ) are vector spaces. Theorem 9 ii)

provides the second inclusion of the next formula, whereas the �rst

one is trivial.

Lwc(X,F ) ⊆ a-Lwc(X,F ) ⊆ l-Lwc(X,F ).
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Following [Emmanuele: Indiana Univ. Math. J. (1987)], a Banach

space X is said to possess the Bourgain�Diestel property if each

limited subset of X is relatively weakly compact, and an operator

T : X → Y is called a Bourgain�Diestel operator (brie�y, T ∈
BD(X,Y )) if T carries limited sets onto relatively weakly compact

sets. The weakly compactness of Lwc sets, De�nitions 7, 10, and

Theorem 9 imply

Lwc(X,F ) ⊆ DP-Lwc(X,F ) ⊆ l-Lwc(X,F ) ⊆ BD(X,F ).

All inclusions here are generally proper.
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Example 11. a) Idℓ1 ∈ a-Lwc(ℓ1)\Lwc(ℓ1) because relatively weakly
compact subsets of ℓ1 are almost order bounded, and they in

turn are Lwc.

b) Idℓ2 ∈ l-Lwc(ℓ2)\a-Lwc(ℓ2) since limited sets in ℓ2 coincide with

relatively compact sets that are in turn l-Lwc sets in ℓ2, while

Bℓ2 is weakly compact but not an l-Lwc set.

c) T := Idc0 ∈ l-Lwc(c0), yet

T ′′ = Id′′c0 = Idℓ∞ /∈ l-Lwc(ℓ∞) = l-Lwc(c′′0).

d) Since l-Lwc(ℓ2) = DP-Lwc(ℓ2) due to re�exivity of ℓ2, item b)

implies Idℓ2 ∈ DP-Lwc(ℓ2) \ a-Lwc(ℓ2). We have no example of

an operator T ∈ a-Lwc(X,F ) \DP-Lwc(X,F ).
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e) Idc0 ∈ l-Lwc(c0) \DP-Lwc(c0) as Bc0 is not Lwc yet is a DP set

in c0.

f) Idc ∈ BD(c) \ l-Lwc(c) since limited sets in c coincide with

relatively compact sets, while ca = c0 ⫋ c implies Idc /∈ l-Lwc(c)

by Theorem 9.

g) Combining d)�f) in one diagonal operator (3× 3)-matrix:

Lwc(ℓ2⊕c0⊕c) ⫋ DP-Lwc(ℓ2⊕c0⊕c) ⫋ l-Lwc(ℓ2⊕c0⊕c) ⫋ BD(ℓ2⊕c0⊕c).



The equivalence i) ⇐⇒ ii) ⇐⇒ iii) ⇐⇒ iv) below follows from

Theorem 9.

Theorem 12. [AEG (2023)] Let T ∈ L(X,F ). TFAE:

i) T ′′ ∈ l-Lwc(X ′′, F ′′).

ii) T ′′ takes compact subsets of X ′′ to Lwc subsets of F ′′.

iii) T ′′(X ′′) ⊆ (F ′′)a.

iv) T ′′′fn
w∗
→ 0 in X ′′′ for each disjoint bounded (fn) in F ′′′.

Each of above equivalent conditions implies:
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v) T ∈ DP-Lwc(X,F ).

The condition v) in turn implies:

vi) T ∈ l-Lwc(X,F ).

Note that, T ∈ l-Lwc(X,F ) does not imply T ′′ ∈ l-Lwc(X ′′, F ′′) in

general (see Example 11 c)). If T ′′ ∈ DP-Lwc(X ′′, F ′′) then

T ′′ ∈ l-Lwc(X ′′, F ′′), and hence T ∈ DP-Lwc(X,F ) by Theorem 12.

We have no example of an operator T ∈ DP-Lwc(X,F ) such that

T ′′ /∈ DP-Lwc(X ′′, F ′′).



Limitedly M-weakly compact operators and the

semi-duality theorem

The following de�nition was taken a starting point in [Oughajji

and Moussa: Afr. Mat. (2022)]. In our approach, this de�nition is

a derivation of Theorem 9 iv), similarly to the classical approach

to Mwc operators introduced in [Meyer-Nieberg: Math. Z. (1974)]

as a derivation of Lwc operators.

De�nition 13. An operator T : E → Y is limitedly Mwc (brie�y,

T ∈ l-Mwc(E, Y )), if Txn
w→ 0 for every disjoint bounded sequence

(xn) in E.
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Now, we discuss the semi-duality for l-Lwc and l-Mwc operators. It

was proved in [Oughajji and Moussa (2022)] that T ∈ l-Mwc+(E,F )

i� T ′ ∈ l-Lwc+(F ′, E′). The next theorem give the general case.

Theorem 14. [AEG (2023)] The following statements hold:

i) T ′ ∈ l-Mwc(F ′, X ′) ⇒ T ∈ l-Lwc(X,F ).

ii) T ′ ∈ l-Lwc(Y ′, E′) ⇔ T ∈ l-Mwc(E, Y ).
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Äîêàçàòåëüñòâî. i) Let T ′ ∈ l-Mwc(F ′, X ′), and let (fn) be disjoint

bounded in F ′. Then T ′fn
w→ 0, and hence T ′fn

w∗
→ 0. Theorem 9

implies T ∈ l-Lwc(X,F ).

ii) (⇐): Let T ∈ l-Mwc(E, Y ). By Theorem 9, for T ′ ∈ l-Lwc(Y ′, E′),

we need to prove that {T ′f} is an l-Lwc subset of E′ for each f ∈ Y ′.

Let f ∈ Y ′. By Lemma 2, it su�ces to show f(Txn) → 0 for each

disjoint sequence (xn) in BE. So, let (xn) be disjoint in BE. Since

T ∈ l-Mwc(E, Y ) then Txn
w→ 0, and hence f(Txn) → 0, as desired.

(⇒): Let T ′ ∈ l-Lwc(Y ′, E′). Then {T ′g} is an Lwc subset of E′

for each g ∈ Y ′ by Theorem 14. It follows from Lemma 2 that

g(Txn) = T ′g(xn) → 0 for each disjoint bounded sequence (xn) in

E. Since g ∈ Y ′ is arbitrary, Txn
w→ 0 for every disjoint bounded (xn)

in E, and therefore T ∈ l-Mwc(E, Y ).
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The similar semi-duality was established in Theorem 6 by Bouras,

Lhaimer, and Moussa [Positivity (2018), (2021)] for almost L-

weakly compact operators and for order L-weakly compact operators.

Although, we have no sequential characterization of DP-Lwc opera-

tors like the characterization of l-Lwc operators given by Theorem

9 iv), there is the following result in this direction.

Theorem 15. [AEG (2023)] Let T ∈ L(X,F ). TFAE.

i) T ′′ ∈ DP-Lwc(X ′′, F ′′).

ii) T ′fn
w→ 0 in X ′ for each disjoint (fn) in BF ′.
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Clearly, DP-Lwc(X,F ), l-Lwc(X,F ), and l-Mwc(E, Y ) are vector

spaces. It is natural to ask whether or not DP-Lwc(X,F ), l-Lwc(X,F ),

and l-Mwc(E, Y ) are Banach spaces under the operator norm. The

answer is a�rmative.

Theorem 16. [AEG (2023)]

i) If DP-Lwc(X,F ) ∋ Tn
∥·∥→ T then T ∈ DP-Lwc(X,F ).

ii) If l-Lwc(X,F ) ∋ Tn
∥·∥→ T then T ∈ l-Lwc(X,F ).

iii) If l-Mwc(E, Y ) ∋ Tn
∥·∥→ T then T ∈ l-Mwc(E, Y )
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