Meyer-Nieberg operators. Recent development.

ОБЪЕДИНЕННЫЙ ВОРКШОП ПО ФУНКЦИОНАЛЬНОМУ АНАЛИЗУ ИМ СО РАН И ЮМИ СО РАН (25-27 ОКТЯБРЯ 2023 Г.)

27 октября 2023 г.

Э.Ю. Емельянов

ИМ СО РАН

Introduction

We denote by X and Y Banach spaces, B_X the closed unit ball of X, by L(X,Y) the space of bounded linear operator from X to Y, E and F Banach lattices, $[x,y] := \{z \in E : x \leq z \leq y\}$ for $x, y \in E$,

$$\operatorname{sol}(A) := \bigcup_{a \in A} [-|a|, |a|]$$

the solid hull of $A \subseteq E$, and

$$E^a := \{ x \in E : |x| \ge x_n \downarrow 0 \Rightarrow ||x_n|| \to 0 \}$$

the order continuous part of E.

In what follows all operators are linear and bounded.

The theory of L-weakly compact (briefly, Lwc) sets and operators was created and developed in [Meyer-Nieberg: Math. Z. (1974)] in order to diversify the concept of weakly compact operators via imposing the Banach lattice structure on the range.

- a) A subset A of F is an Lwc set if every disjoint sequence in sol(A) is norm-null.
- b) An operator L(X, F) is an Lwc operator (briefly, $T \in Lwc(X, F)$) if $T(B_X)$ is an Lwc subset of F.

Meyer-Nieberg proved that Lwc sets are relatively weakly compact (and hence Lwc operators are weakly compact). The next key fact goes back to [Meyer-Nieberg: Math. Z. (1974)]. It was precisely stated in [Burkinshaw and Dodds: Illinois J. Math. (1977)].

Proposition 1. Let $A \subseteq E$ and $B \subseteq E'$ be nonempty bounded sets. Then every disjoint sequence in sol(A) is uniformly null on B iff every disjoint sequence in sol(B) is uniformly null on A. Since $||f|| = \sup\{|f(x)| : x \in B_X\} = \sup\{|y(f)| : y \in B_{X''}\}$ then a sequence (f_n) in X' is uniformly null on B_X iff it is uniformly null on $B_{X''}$, and hence the next lemma follows from Proposition 1.

Lemma 2. Let C be a nonempty bounded subset of F'. TFAE.

i) C is an Lwc subset of F'.

ii) Each disjoint sequence in B_F is uniformly null on C.

iii) Each disjoint sequence in $B_{F''}$ is uniformly null on C.

Meyer-Nieberg described the duals of Lwc operators via

Definition 3. An operator $T \in L(E, Y)$ is called an Mwc operator if $||Tx_n|| \to 0$ for every disjoint bounded (x_n) in E.

and proved in Satz.3 of [Meyer-Nieberg: Math. Z. (1974)]

$$S' \in \mathsf{Lwc}(Y', E') \iff S \in \mathsf{Mwc}(E, Y).$$

$$T' \in \mathsf{Mwc}(F', X') \iff T \in \mathsf{Lwc}(X, F).$$

In particular, the bi-duals of Lwc- (Mwc-operators) are Lwc (Mwc).

Replacing (in the definition of Lwc-operators) norm bounded sets by weakly compact sets and by order bounded sets, Bouras, Lhaimer and Moussa introduced in [BLM: Positivity (2018) and (2021)]

Definition 4. An operator $T \in L(X, F)$ (resp. $T \in L(E, F)$) is called a-Lwc (resp. o-Lwc) if T carries weakly compact subsets of X (resp. order bounded subsets of E) onto Lwc-subsets of F.

and described the duals of a-Lwc- and o-Lwc-operators via

Definition 5. An operator $T \in L(E, Y)$ is called

a) almost M-weakly compact (a-Mwc) if $f_n(Tx_n) \to 0$ for every w-convergent (f_n) in Y' and every disjoint bounded (x_n) in E.

An operator $T \in L(E, F)$ is called

b) order M-weakly compact (o-Mwc) if $f_n(Tx_n) \to 0$ for every order bounded (f_n) in F' and every disjoint bounded (x_n) in E.

Although the bi-duals of a-Lwc-/o-Lwc-operators need not to be a-Lwc/o-Lwc, there is the following semi-duality

Theorem 6. [BLM: Positivity (2018)]:

(i)
$$S' \in a-LW(Y', E') \iff S \in a-MW(E, Y).$$

(ii)
$$T' \in a\text{-}\mathsf{MW}(F', X') \Rightarrow T \in a\text{-}\mathsf{LW}(X, F).$$

And [BLM: Positivity (2021)]:

(iii) $S' \in \text{o-LW}(F', E') \iff S \in \text{o-MW}(E, F)$.

(iv) $T' \in \text{o-MW}(F', E') \Rightarrow T \in \text{o-LW}(E, F).$

Definition 7. A bounded subset A of X is called:

- a) a Dunford-Pettis set (or A is DP) if (f_n) is uniformly null on A for each w-null (f_n) in X' [Andrews: Math. Ann. (1979)].
- b) a *limited set* if (f_n) is uniformly null on A for each w*-null (f_n) in X' [Bourgain and Diestel: Math. Nachr. (1984)].

In reflexive spaces, DP sets and limited sets agree with relatively compact sets. In general,

A is relatively compact $\Rightarrow A$ is limited $\Rightarrow A$ is DP.

The unit ball B_X is not limited in X unless dim $(X) < \infty$ (this fact was a solution of a long-standing open problem that each w^{*}-null sequence in a Banach space is norm-null iff the BS is finite dimentional in [Josefson: Arkiv for Math (1975)] and [Nissenzweig: Isr. J. Math (1975)]). In particular, B_{c_0} is not limited in c_0 .

Phillip's lemma [Phillips: TAMS (1940)] is exactly the fact that $\widehat{B_{c_0}}$ is limited in $c_0'' = \ell^{\infty}$.

Limited sets are relatively compact in separable and in reflexive Banach spaces by [BD (1984)].

 B_{c_0} is DP because $c'_0 = \ell^1$ has the Schur property. It is shown by Alpay, Gorokhova, and EE [AEG: preprint (2023)] that DP sets turn to limited sets while embedded in the bi-dual.

Theorem 8. [AEG (2023)] Let $A \subseteq X$. TFAE:

i) A is a DP subset of X.

ii) \widehat{A} is a limited subset of X''.

Dunford–Pettis L-weakly compact and limitedly L-weakly compact operators

The proof of the following theorem is based on Proposition 1.

Theorem 9. [AEG (2023)] Let $T \in L(X, F)$. TFAE.

i) T takes limited subsets of X onto Lwc subsets of F.

ii) T takes compact subsets of X onto Lwc subsets of F.

iii) $\{Tx\}$ is an Lwc subset of F for each $x \in X$.

iv) $T'f_n \xrightarrow{\mathsf{W}^*} 0$ in X' for each disjoint bounded sequence (f_n) in F'.

Because of *i*), we prefer to call operators satisfying the above conditions by limitedly Lwc *operators* (they may equally deserve to be called *compactly* Lwc *operators* due to *ii*)). Operators satisfying *iv*) were introduced in [Oughajji and Moussa: Afr. Mat. (2022)] under the name *weak* L*-weakly compact operators* (this name looks more suitable for a-Lwc operators rather than for l-Lwc operators).

Definition 10. An operator $T: X \to F$ is called:

- a) a Dunford-Pettis L-weakly compact (briefly, $T \in DP-Lwc(X, F)$), if T carries DP subsets of X onto Lwc subsets of F.
- b) *limitedly* L-*weakly compact* (briefly, $T \in I-Lwc(X, F)$), if T carries limited subsets of X onto Lwc subsets of F.

DP-Lwc(X, F) and I-Lwc(X, F) are vector spaces. Theorem 9 *ii*) provides the second inclusion of the next formula, whereas the first one is trivial.

$$Lwc(X, F) \subseteq a-Lwc(X, F) \subseteq l-Lwc(X, F).$$

Following [Emmanuele: Indiana Univ. Math. J. (1987)], a Banach space X is said to possess the *Bourgain–Diestel property* if each limited subset of X is relatively weakly compact, and an operator $T : X \rightarrow Y$ is called a *Bourgain–Diestel operator* (briefly, $T \in$ BD(X,Y)) if T carries limited sets onto relatively weakly compact sets. The weakly compactness of Lwc sets, Definitions 7, 10, and Theorem 9 imply

 $Lwc(X, F) \subseteq DP-Lwc(X, F) \subseteq I-Lwc(X, F) \subseteq BD(X, F).$

All inclusions here are generally proper.

- **Example 11.** a) $Id_{\ell^1} \in a-Lwc(\ell^1) \setminus Lwc(\ell^1)$ because relatively weakly compact subsets of ℓ^1 are almost order bounded, and they in turn are Lwc.
- b) $\operatorname{Id}_{\ell^2} \in \operatorname{I-Lwc}(\ell^2) \setminus \operatorname{a-Lwc}(\ell^2)$ since limited sets in ℓ^2 coincide with relatively compact sets that are in turn I-Lwc sets in ℓ^2 , while B_{ℓ^2} is weakly compact but not an I-Lwc set.

c)
$$T := \operatorname{Id}_{c_0} \in \operatorname{I-Lwc}(c_0)$$
, yet
$$T'' = \operatorname{Id}_{c_0}'' = \operatorname{Id}_{\ell^{\infty}} \notin \operatorname{I-Lwc}(\ell^{\infty}) = \operatorname{I-Lwc}(c_0'').$$

d) Since I-Lwc(ℓ^2) = DP-Lwc(ℓ^2) due to reflexivity of ℓ^2 , item b) implies Id_{ℓ^2} \in DP-Lwc(ℓ^2) \ a-Lwc(ℓ^2). We have no example of an operator $T \in$ a-Lwc(X, F) \ DP-Lwc(X, F).

- e) $Id_{c_0} \in I-Lwc(c_0) \setminus DP-Lwc(c_0)$ as B_{c_0} is not Lwc yet is a DP set in c_0 .
- f) $Id_c \in BD(c) \setminus I-Lwc(c)$ since limited sets in c coincide with relatively compact sets, while $c^a = c_0 \subsetneq c$ implies $Id_c \notin I-Lwc(c)$ by Theorem 9.
- g) Combining d)-f) in one diagonal operator (3×3) -matrix: $Lwc(\ell^2 \oplus c_0 \oplus c) \subsetneq DP-Lwc(\ell^2 \oplus c_0 \oplus c) \gneqq DP-Lwc(\ell^2 \oplus c_0 \oplus c) \gneqq DD(\ell^2 \oplus c_0 \oplus c).$

The equivalence i) \iff ii) \iff iv) below follows from Theorem 9.

Theorem 12. [AEG (2023)] *Let* $T \in L(X, F)$. *TFAE:*

i)
$$T'' \in \mathsf{I-Lwc}(X'', F'')$$
.

ii) T'' takes compact subsets of X'' to Lwc subsets of F''.

iii) $T''(X'') \subseteq (F'')^a$.

iv) $T'''f_n \xrightarrow{\mathsf{W}^*} 0$ in X''' for each disjoint bounded (f_n) in F'''.

Each of above equivalent conditions implies:

```
v) T \in \mathsf{DP-Lwc}(X, F).
```

The condition v) in turn implies:

```
vi) T \in I-Lwc(X, F).
```

Note that, $T \in I-Lwc(X, F)$ does not imply $T'' \in I-Lwc(X'', F'')$ in general (see Example 11 c)). If $T'' \in DP-Lwc(X'', F'')$ then $T'' \in I-Lwc(X'', F'')$, and hence $T \in DP-Lwc(X, F)$ by Theorem 12. We have no example of an operator $T \in DP-Lwc(X, F)$ such that $T'' \notin DP-Lwc(X'', F'')$.

Limitedly M-weakly compact operators and the semi-duality theorem

The following definition was taken a starting point in [Oughajji and Moussa: Afr. Mat. (2022)]. In our approach, this definition is a derivation of Theorem 9iv), similarly to the classical approach to Mwc operators introduced in [Meyer-Nieberg: Math. Z. (1974)] as a derivation of Lwc operators.

Definition 13. An operator $T : E \to Y$ is *limitedly* Mwc (briefly, $T \in I-Mwc(E,Y)$), if $Tx_n \xrightarrow{W} 0$ for every disjoint bounded sequence (x_n) in E.

Now, we discuss the semi-duality for I-Lwc and I-Mwc operators. It was proved in [Oughajji and Moussa (2022)] that $T \in$ I-Mwc₊(E, F) iff $T' \in$ I-Lwc₊(F', E'). The next theorem give the general case.

Theorem 14. [AEG (2023)] *The following statements hold:*

i)
$$T' \in I-Mwc(F', X') \Rightarrow T \in I-Lwc(X, F).$$

ii) $T' \in I-Lwc(Y', E') \Leftrightarrow T \in I-Mwc(E, Y)$.

Доказательство. i) Let $T' \in \text{I-Mwc}(F', X')$, and let (f_n) be disjoint bounded in F'. Then $T'f_n \xrightarrow{W} 0$, and hence $T'f_n \xrightarrow{W^*} 0$. Theorem 9 implies $T \in \text{I-Lwc}(X, F)$.

ii) (\Leftarrow): Let $T \in \text{I-Mwc}(E, Y)$. By Theorem 9, for $T' \in \text{I-Lwc}(Y', E')$, we need to prove that $\{T'f\}$ is an I-Lwc subset of E' for each $f \in Y'$. Let $f \in Y'$. By Lemma 2, it suffices to show $f(Tx_n) \to 0$ for each disjoint sequence (x_n) in B_E . So, let (x_n) be disjoint in B_E . Since $T \in \text{I-Mwc}(E, Y)$ then $Tx_n \xrightarrow{W} 0$, and hence $f(Tx_n) \to 0$, as desired.

(⇒): Let $T' \in I$ -Lwc(Y', E'). Then $\{T'g\}$ is an Lwc subset of E'for each $g \in Y'$ by Theorem 14. It follows from Lemma 2 that $g(Tx_n) = T'g(x_n) \rightarrow 0$ for each disjoint bounded sequence (x_n) in E. Since $g \in Y'$ is arbitrary, $Tx_n \xrightarrow{W} 0$ for every disjoint bounded (x_n) in E, and therefore $T \in I$ -Mwc(E, Y).

20

The similar semi-duality was established in Theorem 6 by Bouras, Lhaimer, and Moussa [Positivity (2018), (2021)] for almost Lweakly compact operators and for order L-weakly compact operators.

Although, we have no sequential characterization of DP-Lwc operators like the characterization of I-Lwc operators given by Theorem 9 iv), there is the following result in this direction.

Theorem 15. [AEG (2023)] Let $T \in L(X, F)$. TFAE.

i) $T'' \in \mathsf{DP-Lwc}(X'', F'')$.

ii) $T'f_n \xrightarrow{\mathsf{W}} 0$ in X' for each disjoint (f_n) in $B_{F'}$.

Clearly, DP-Lwc(X, F), I-Lwc(X, F), and I-Mwc(E, Y) are vector spaces. It is natural to ask whether or not DP-Lwc(X, F), I-Lwc(X, F), and I-Mwc(E, Y) are Banach spaces under the operator norm. The answer is affirmative.

Theorem 16. [AEG (2023)]

i) If DP-Lwc(X, F)
$$\ni T_n \xrightarrow{\|\cdot\|} T$$
 then $T \in \text{DP-Lwc}(X, F)$.

ii) If I-Lwc(X, F) $\ni T_n \xrightarrow{\|\cdot\|} T$ then $T \in \text{I-Lwc}(X, F)$.

iii) If I-Mwc(E, Y) $\ni T_n \xrightarrow{\|\cdot\|} T$ then $T \in I-Mwc(E, Y)$

Bibliography

[1] P. Meyer-Nieberg.: Uber Klassen Schwach Kompakter Operatoren in Banachverbanden. Math. Z. 138, 145–159 (1974).

[2] K. Bouras, D. Lhaimer, M. Moussa.: On the class of almost L-weakly and almost M-weakly compact operators. Positivity 22, 1433–1443 (2018).

[3] D. Lhaimer, K. Bouras, M. Moussa.: On the class of order L- and order *M*-weakly compact operators. Positivity 25, 1569–1578 (2021).

[4] F. Z. Oughajji, M. Moussa.: Weak M weakly compact and weak L weakly compact operators. Afr. Mat. 33, 2–15 (2022).

[5] S. Alpay, E. Emelyanov, S. Gorokhova.: Duality and norm completeness in the classes of limitedly-Lwc and Dunford–Pettis-Lwc operators. arXiv: 2308.15414 (2023).

THANK YOU FOR THE ATTENTION!